Audio Visual Speech Enhancement
نویسنده
چکیده
This thesis presents a novel approach to speech enhancement by exploiting the bimodality of speech production and the correlation that exists between audio and visual speech information. An analysis into the correlation of a range of audio and visual features reveals significant correlation to exist between visual speech features and audio filterbank features. The amount of correlation was also found to be greater when the correlation is analysed with individual phonemes rather than across all phonemes. This led to building a Gaussian Mixture Model (GMM) that is capable of estimating filterbank features from visual features. Phonemespecific GMMs gave lower filterbank estimation errors and a phoneme transcription is decoded using audio-visual Hidden Markov Model (HMM). Clean filterbank estimates along with mean noise estimates were then utilised to construct visuallyderived Wiener filters that are able to enhance noisy speech. The mean noise estimates were computed from non-speech periods, identified by an audio-visual speech activity detection system proposed in this work. Subjective and objective speech quality evaluation was carried out and the visually-derived Wiener filtering was shown to be a powerful speech enhancement method.
منابع مشابه
Comparing the Impact of Audio-Visual Input Enhancement on Collocation Learning in Traditional and Mobile Learning Contexts
: This study investigated the impact of audio-visual input enhancement teaching techniques on improving English as Foreign Language (EFL) learnersˈ collocation learning as well as their accuracy concerning collocation use in narrative writing. In addition, it compared the impact and efficiency of audio-visual input enhancement in two learning contexts, namely traditional and mo...
متن کاملEffective visually-derived Wiener filtering for audio-visual speech processing
This work presents a novel approach to speech enhancement by exploiting the bimodality of speech and the correlation that exists between audio and visual speech features. For speech enhancement, a visually-derived Wiener filter is developed. This obtains clean speech statistics from visual features by modelling their joint density and making a maximum a posteriori estimate of clean audio from v...
متن کاملNoisy audio speech enhancement using Wiener filters derived from visual speech
The aim of this paper is to use visual speech information to create Wiener filters for audio speech enhancement. Wiener filters require estimates of both clean speech statistics and noisy speech statistics. Noisy speech statistics are obtained from the noisy input audio while obtaining clean speech statistics is more difficult and is a major problem in the creation of Wiener filters for speech ...
متن کاملJoint audio-visual speech processing for recognition and enhancement
Visual speech information present in the speaker’s mouth region has long been viewed as a source for improving the robustness and naturalness of human-computer-interfaces (HCI). Such information can be particularly crucial in realistic HCI environments, where the acoustic channel is corrupted, and as a result, the performance of traditional automatic speech recognition (ASR) systems falls below...
متن کاملEnhancing audio speech using visual speech features
This work presents a novel approach to speech enhancement by exploiting the bimodality of speech and the correlation that exists between audio and visual speech features. For speech enhancement, a visually-derived Wiener filter is developed. This obtains clean speech statistics from visual features by modelling their joint density and making a maximum a posteriori estimate of clean audio from v...
متن کامل